Back to Search
Start Over
Syntheses, Structures, and Electrochemistry of the Defective ccp [Pt33(CO)38](2-) and the bcc [Pt40(CO)40](6-) Molecular Nanoclusters.
- Source :
-
Inorganic chemistry [Inorg Chem] 2016 Jun 20; Vol. 55 (12), pp. 6068-79. Date of Electronic Publication: 2016 Jun 09. - Publication Year :
- 2016
-
Abstract
- The molecular [Pt33(CO)38](2-) nanocluster was obtained from the thermal decomposition of Na2[Pt15(CO)30] in methanol. The reaction of [Pt19(CO)22](4-) with acids (1-2 equiv) affords the unstable [Pt19(CO)22](3-) trianion, which evolves with time leading eventually to the [Pt40(CO)40](6-) hexa-anion. The total structures of both nanoclusters were determined via single-crystal X-ray diffraction. [Pt33(CO)38](2-) displays a defective ccp Pt33 core and shows that localized deformations occur in correspondence of atomic defects to "repair" them. In contrast, [Pt40(CO)40](6-) shows a bcc Pt40 core and represents the largest Pt cluster with a body-centered structure. The rich electrochemistry of the two high-nuclearity platinum carbonyl clusters was studied by cyclic voltammetry and electrochemical in situ Fourier transform infrared spectroscopy. The redox changes of [Pt33(CO)38](2-) show features of chemical reversibility and electrochemical quasi-reversibility, and the vibrational spectra in the CO stretching region of the nine redox forms of the cluster [Pt33(CO)38](n) (n = 0 to -4, -6 to -9) are reported. Almost all the redox processes exhibited by [Pt40(CO)40](6-) are chemically and electrochemically reversible, and the eight oxidation states of [Pt40(CO)40] from -4 to -11 were spectroscopically characterized. The effect of the more regular bcc Pt-carbonyl cluster structure of [Pt40(CO)40](6-) with respect to that of the defective ccp Pt33 core on the redox behavior is discussed.
Details
- Language :
- English
- ISSN :
- 1520-510X
- Volume :
- 55
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Inorganic chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 27281686
- Full Text :
- https://doi.org/10.1021/acs.inorgchem.6b00607