Back to Search Start Over

Limiting prothrombin activation to meizothrombin is compatible with survival but significantly alters hemostasis in mice.

Authors :
Shaw MA
Kombrinck KW
McElhinney KE
Sweet DR
Flick MJ
Palumbo JS
Cheng M
Esmon NL
Esmon CT
Brill A
Wagner DD
Degen JL
Mullins ES
Source :
Blood [Blood] 2016 Aug 04; Vol. 128 (5), pp. 721-31. Date of Electronic Publication: 2016 Jun 01.
Publication Year :
2016

Abstract

Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIa(MZ)). FIIa(MZ) has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation. Thus, fII activation may differentially influence hemostasis and disease depending on the pathway of activation. To determine the in vivo physiologic and pathologic consequences of restricting thrombin generation to fIIa(MZ), mutations were introduced into the endogenous fII gene, resulting in expression of prothrombin carrying 3 amino acid substitutions (R157A, R268A, and K281A) to limit activation events to yield only fIIa(MZ) Homozygous fII(MZ) mice are viable, express fII levels comparable with fII(WT) mice, and have reproductive success. Although in vitro studies revealed delayed generation of fIIa(MZ) enzyme activity, platelet aggregation by fII(MZ) is similar to fII(WT) Consistent with prior analyses of human fIIa(MZ), significant prolongation of clotting times was observed for fII(MZ) plasma. Adult fII(MZ) animals displayed significantly compromised hemostasis in tail bleeding assays, but did not demonstrate overt bleeding. More notably, fII(MZ) mice had 2 significant phenotypic advantages over fII(WT) animals: protection from occlusive thrombosis after arterial injury and markedly diminished metastatic potential in a setting of experimental tumor metastasis to the lung. Thus, these novel animals will provide a valuable tool to assess the role of both fIIa and fIIa(MZ) in vivo.<br /> (© 2016 by The American Society of Hematology.)

Details

Language :
English
ISSN :
1528-0020
Volume :
128
Issue :
5
Database :
MEDLINE
Journal :
Blood
Publication Type :
Academic Journal
Accession number :
27252233
Full Text :
https://doi.org/10.1182/blood-2015-11-680280