Back to Search Start Over

Whole-organism lineage tracing by combinatorial and cumulative genome editing.

Authors :
McKenna A
Findlay GM
Gagnon JA
Horwitz MS
Schier AF
Shendure J
Source :
Science (New York, N.Y.) [Science] 2016 Jul 29; Vol. 353 (6298), pp. aaf7907. Date of Electronic Publication: 2016 May 26.
Publication Year :
2016

Abstract

Multicellular systems develop from single cells through distinct lineages. However, current lineage-tracing approaches scale poorly to whole, complex organisms. Here, we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 target sites, marks cells and enables the elucidation of lineage relationships via the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable and that thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of thousands of cells from individual zebrafish, we find that most cells in adult organs derive from relatively few embryonic progenitors. In future analyses, genome editing of synthetic target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell lineage in multicellular systems for normal development and disease.<br /> (Copyright © 2016, American Association for the Advancement of Science.)

Details

Language :
English
ISSN :
1095-9203
Volume :
353
Issue :
6298
Database :
MEDLINE
Journal :
Science (New York, N.Y.)
Publication Type :
Academic Journal
Accession number :
27229144
Full Text :
https://doi.org/10.1126/science.aaf7907