Back to Search
Start Over
Cross-species amplification and polymorphism of microsatellite loci in Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) in Brazilian cropping systems.
- Source :
-
Genetics and molecular research : GMR [Genet Mol Res] 2016 Apr 04; Vol. 15 (2). Date of Electronic Publication: 2016 Apr 04. - Publication Year :
- 2016
-
Abstract
- The Old World bollworm Helicoverpa armigera (Hübner) was recently discovered in Brazil. This species is closely related to the New World bollworm H. zea (Boddie), and mating between these species has already been reported under laboratory conditions. Here, we tested the cross-species amplification of 20 microsatellite (SSR) loci in field populations of H. armigera and H. zea collected from Brazilian cropping systems. Seven SSR loci were successfully amplified and polymorphic in both species except for the locus HaC14, which was monomorphic for H. zea. All SSR loci were in linkage equilibrium, and deviations from Hardy- Weinberg equilibrium were only observed for the locus HarSSR1 in the HaRS-2 population, where null alleles were present. A moderate level of polymorphism was detected in H. armigera and H. zea populations with a mean allele number of 4.14, and 2.24, respectively. Interestingly, most of the populations of the recent invader H. armigera showed higher genetic diversity and inbreeding coefficients than H. zea populations. The genetic identity of each species was recovered using a STRUCTURE analysis, where the populations formed two clusters (K = 2) according to their species. STRUCTURE also suggested the occurrence of potential hybrid offspring between H. armigera and H. zea individuals in natural conditions. These SSR loci will be valuable in characterizing population differentiation, invasion routes, adaptation, reproductive behavior, and intra- and interspecific gene flow in H. armigera and H. zea populations in Brazil, the USA, and other areas where these two pests occur.
Details
- Language :
- English
- ISSN :
- 1676-5680
- Volume :
- 15
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Genetics and molecular research : GMR
- Publication Type :
- Academic Journal
- Accession number :
- 27173200
- Full Text :
- https://doi.org/10.4238/gmr.15027890