Back to Search Start Over

Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers.

Authors :
Bruzauskaite I
Bironaite D
Bagdonas E
Skeberdis VA
Denkovskij J
Tamulevicius T
Uvarovas V
Bernotiene E
Source :
Stem cell research & therapy [Stem Cell Res Ther] 2016 Apr 30; Vol. 7 (1), pp. 67. Date of Electronic Publication: 2016 Apr 30.
Publication Year :
2016

Abstract

Background: The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs.<br />Methods: hMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2-3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone.<br />Results: Intracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p < 0.05). Transfection efficiency was 45 ± 5 %. The viability of mHCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52-53 % in G2/M and 31-35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7.11-fold, p = 0.00056) which regulates the G1 phase. mHCN2-expressing hMSCs were attached and made anchorage-dependent connection with other cells without transmigration through a 12.7-μm thick Kapton® HN film with micromachined 1-3 μm diameter pores.<br />Conclusions: mHCN2-expressing hMSCs preserved the major cell functions required for the generation of biological pacemakers: high viability, functional activity, but low proliferation rate through the arrest of cell cycle in the G1 phase. mHCN2-expressing hMSCs attached and grew on a Kapton® scaffold without transmigration, confirming the relevance of these cells for the generation of biological pacemakers.

Details

Language :
English
ISSN :
1757-6512
Volume :
7
Issue :
1
Database :
MEDLINE
Journal :
Stem cell research & therapy
Publication Type :
Academic Journal
Accession number :
27137910
Full Text :
https://doi.org/10.1186/s13287-016-0326-z