Back to Search Start Over

Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter.

Authors :
Rannversson H
Andersen J
Sørensen L
Bang-Andersen B
Park M
Huber T
Sakmar TP
Strømgaard K
Source :
Nature communications [Nat Commun] 2016 Apr 19; Vol. 7, pp. 11261. Date of Electronic Publication: 2016 Apr 19.
Publication Year :
2016

Abstract

Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslinking unnatural amino acids (UAAs) into 75 different positions in hSERT. UAAs are incorporated with high specificity, and functionally active transporters have similar transport properties and pharmacological profiles compared with wild-type transporters. We employ ultraviolet-induced crosslinking with p-azido-L-phenylalanine (azF) at selected positions in hSERT to map the binding site of imipramine, a prototypical tricyclic antidepressant, and vortioxetine, a novel multimodal antidepressant. We find that the two antidepressants crosslink with azF incorporated at different positions within the central substrate-binding site of hSERT, while no crosslinking is observed at the vestibular-binding site. Taken together, our data provide direct evidence for defining the high-affinity antidepressant binding site in hSERT.

Details

Language :
English
ISSN :
2041-1723
Volume :
7
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
27089947
Full Text :
https://doi.org/10.1038/ncomms11261