Back to Search Start Over

Vertical and horizontal variability in airborne nanoparticles and their exposure around signalised traffic intersections.

Authors :
Goel A
Kumar P
Source :
Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2016 Jul; Vol. 214, pp. 54-69. Date of Electronic Publication: 2016 Apr 08.
Publication Year :
2016

Abstract

We measured size-resolved PNCs in the 5-560 nm range at two different types (4- and 3-way) of TIs in Guildford (Surrey, UK) at fixed sites (∼1.5 m above the road level), sequentially at 4 different heights (1, 1.5, 2.5 and 4.7 m), and along the road at five different distances (10, 20, 30, 45 and 60 m). The aims were to: (i) assess the differences in PNCs measured at studied TIs, (ii) identify the best fit probability distribution curves for the PNCs, (iii) determine vertical and horizontal decay profiles of PNCs, (iv) estimate particle number emission factors (PNEFs) under congested and free-flow traffic conditions, and (v) quantify the pedestrian exposure in terms of respiratory deposition dose (RDD) rates at the TIs. Daily averaged particle number distributions at TIs reflected the effect of fresh emissions with peaks at 5.6, 10 and 56 nm. Despite the relatively high traffic volume at 3-way TI, average PNCs at 4-way TI were about twice as high as at 3-way TI, indicating less favourable dispersion conditions. Generalised extreme value distribution fitted well to PNC data at both TIs. Vertical PNC profiles followed an exponential decay, which was much sharper at 4-way TI than at 3-way TI, suggesting ∼40% less exposure for people at first floor (4.7 m) to those at ground floor around 4-way TI. Vertical profiles indicated much sharper (∼132-times larger) decay than in horizontal direction, due to close vicinity of road vehicles during the along-road measurements. Over an order of magnitude higher PNEFs were found during congested, compared with free-flow, conditions due to frequent changes in traffic speed. Average RDD rate at 4-way TI during congested conditions were up to 14-times higher than those at 3-way TI (0.4 × 10(11) h(-1)). Findings of this study are a step forward to understand exposure at and around the TIs.<br /> (Copyright © 2016 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-6424
Volume :
214
Database :
MEDLINE
Journal :
Environmental pollution (Barking, Essex : 1987)
Publication Type :
Academic Journal
Accession number :
27061475
Full Text :
https://doi.org/10.1016/j.envpol.2016.03.033