Back to Search Start Over

Glass Polyalkenoate Cements Designed for Cranioplasty Applications: An Evaluation of Their Physical and Mechanical Properties.

Authors :
Khader BA
Curran DJ
Peel S
Towler MR
Source :
Journal of functional biomaterials [J Funct Biomater] 2016 Mar 25; Vol. 7 (2). Date of Electronic Publication: 2016 Mar 25.
Publication Year :
2016

Abstract

Glass polyalkenoate cements (GPCs) have potential for skeletal cementation. Unfortunately, commercial GPCs all contain, and subsequently release, aluminum ions, which have been implicated in degenerative brain disease. The purpose of this research was to create a series of aluminum-free GPCs constructed from silicate (SiO₂), calcium (CaO), zinc (ZnO) and sodium (Na₂O)-containing glasses mixed with poly-acrylic acid (PAA) and to evaluate the potential of these cements for cranioplasty applications. Three glasses were formulated based on the SiO₂-CaO-ZnO-Na₂O parent glass (KBT01) with 0.03 mol % (KBT02) and 0.06 mol % (KBT03) germanium (GeO₂) substituted for ZnO. Each glass was then mixed with 50 wt % of a patented SiO₂-CaO-ZnO-strontium (SrO) glass composition and the resultant mixtures were subsequently reacted with aqueous PAA (50 wt % addition) to produce three GPCs. The incorporation of Ge in the glass phase was found to result in decreased working (142 s to 112 s) and setting (807 s to 448 s) times for the cements manufactured from them, likely due to the increase in crosslink formation between the Ge-containing glasses and the PAA. Compressive (σc) and biaxial flexural (σf) strengths of the cements were examined at 1, 7 and 30 days post mixing and were found to increase with both maturation and Ge content. The bonding strength of a titanium cylinder (Ti) attached to bone by the cements increased from 0.2 MPa, when placed, to 0.6 MPa, after 14 days maturation. The results of this research indicate that Germano-Silicate based GPCs have suitable handling and mechanical properties for cranioplasty fixation.

Details

Language :
English
ISSN :
2079-4983
Volume :
7
Issue :
2
Database :
MEDLINE
Journal :
Journal of functional biomaterials
Publication Type :
Academic Journal
Accession number :
27023623
Full Text :
https://doi.org/10.3390/jfb7020008