Back to Search Start Over

The Helicobacter pylori CZB Cytoplasmic Chemoreceptor TlpD Forms an Autonomous Polar Chemotaxis Signaling Complex That Mediates a Tactic Response to Oxidative Stress.

Authors :
Collins KD
Andermann TM
Draper J
Sanders L
Williams SM
Araghi C
Ottemann KM
Source :
Journal of bacteriology [J Bacteriol] 2016 May 13; Vol. 198 (11), pp. 1563-75. Date of Electronic Publication: 2016 May 13 (Print Publication: 2016).
Publication Year :
2016

Abstract

Unlabelled: Cytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor is Helicobacter pylori TlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all tested H. pylori strains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allow H. pylori to avoid areas of the stomach with high concentrations of reactive oxygen species.<br />Importance: Helicobacter pylori senses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aids H. pylori in encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions. H. pylori encounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.<br /> (Copyright © 2016, American Society for Microbiology. All Rights Reserved.)

Details

Language :
English
ISSN :
1098-5530
Volume :
198
Issue :
11
Database :
MEDLINE
Journal :
Journal of bacteriology
Publication Type :
Academic Journal
Accession number :
27002127
Full Text :
https://doi.org/10.1128/JB.00071-16