Back to Search Start Over

Liver receptor homolog 1 influences blastocyst hatching in pigs.

Authors :
Guo J
Zhao MH
Liang S
Choi JW
Kim NH
Cui XS
Source :
The Journal of reproduction and development [J Reprod Dev] 2016 Jun 17; Vol. 62 (3), pp. 297-303. Date of Electronic Publication: 2016 Mar 13.
Publication Year :
2016

Abstract

Liver receptor homolog 1 (Lrh1, also known as Nr5a2) belongs to the orphan nuclear receptor superfamily and has diverse functions in development, metabolism, and cell differentiation and death. Lrh1 regulates the expression of Oct4, which is a key factor of early embryonic differentiation. However, the role of Lrh1 in early development of mammalian embryo is unknown. In the present study, the localization, Lrh1 mRNA expression, and LRH1 protein levels in porcine early parthenotes were examined by immunofluorescence and real-time reverse-transcription polymerase chain reaction. To determine the role of Lrh1 in porcine early embryo development, the parthenotes were treated with the specific LRH1 antagonist 505601. The immunofluorescence signal for LRH1 was only observed in the nucleus of blastocysts. The blastocyst developmental rate in the presence of 50 and 100 μM 505601 was significantly lower than that in the control group. The blastocyst hatching rate was also reduced in the presence of 50 and 100 μM 505601 than that under control conditions. The latter effect was possibly due to the decreased expression of hatching-related genes such as Fn1, Itgα5, and Cox2 upon the inhibition of Lrh1. Incubation with the LRH1 antagonist also increased the number of apoptotic cells among the blastocysts. Moreover, LRH1 inhibition enhanced the expression of the pro-apoptotic genes Bax and Casp3, and reduced the expression of the anti-apoptotic gene Bcl2. Lrh1 inhibition also led to significant decrease in the expression levels of Oct4 mRNA and octamer-binding transcription factor 4 (OCT4) protein in the blastocysts. In conclusion, Lrh1 affects blastocyst formation and hatching in porcine embryonic development through the regulation of OCT4 expression and cell apoptosis.

Details

Language :
English
ISSN :
1348-4400
Volume :
62
Issue :
3
Database :
MEDLINE
Journal :
The Journal of reproduction and development
Publication Type :
Academic Journal
Accession number :
26971889
Full Text :
https://doi.org/10.1262/jrd.2015-159