Back to Search Start Over

Targeted activation of primitive neural stem cells in the mouse brain.

Authors :
Reeve RL
Yammine SZ
DeVeale B
van der Kooy D
Source :
The European journal of neuroscience [Eur J Neurosci] 2016 Jun; Vol. 43 (11), pp. 1474-85. Date of Electronic Publication: 2016 Apr 04.
Publication Year :
2016

Abstract

Primitive neural stem cells (pNSCs) are the earliest NSCs to appear in the developing forebrain. They persist into the adult forebrain where they can generate all cells in the neural lineage and therefore hold great potential for brain regeneration. Thus, pNSCs are an ideal population to target to promote endogenous NSC activation. pNSCs can be isolated from the periventricular region as leukaemia inhibitory factor-responsive cells, and comprise a rare population in the adult mouse brain. We hypothesized that the pup periventricular region gives rise to more clonal pNSC-derived neurospheres but that pup-derived pNSCs are otherwise comparable to adult-derived pNSCs, and can be used to identify selective markers and activators of endogenous pNSCs. We tested the self-renewal ability, differentiation capacity and gene expression profile of pup-derived pNSCs and found them each to be comparable to adult-derived pNSCs, including being GFAP(-) , nestin(mid) , Oct4(+) . Next, we used pup pNSCs to test pharmacological compounds to activate pNSCs to promote endogenous brain repair. We hypothesized that pNSCs could be activated by targeting the cell surface proteins C-Kit and ErbB2, which were enriched in pNSCs relative to definitive NSCs (dNSCs) in an in vitro screen. C-Kit and ErbB2 signalling inhibition had distinct effects on pNSCs and dNSCs in vitro, and when infused directly into the adult brain in vivo. Targeted activation of pNSCs with C-Kit and ErbB2 modulation is a valuable strategy to activate the earliest cell in the neural lineage to contribute to endogenous brain regeneration.<br /> (© 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1460-9568
Volume :
43
Issue :
11
Database :
MEDLINE
Journal :
The European journal of neuroscience
Publication Type :
Academic Journal
Accession number :
26946195
Full Text :
https://doi.org/10.1111/ejn.13228