Back to Search
Start Over
Biological responses of osteocytic connexin 43 hemichannels to simulated microgravity.
- Source :
-
Journal of orthopaedic research : official publication of the Orthopaedic Research Society [J Orthop Res] 2017 Jun; Vol. 35 (6), pp. 1195-1202. Date of Electronic Publication: 2017 May 04. - Publication Year :
- 2017
-
Abstract
- Connexin 43 (Cx43) hemichannels and gap junctions in osteocytes are responsive to mechanical loading, which is important for bone formation and remodeling. However, the mechanism of these Cx43-forming channels in the process of mechanical unloading is still not very clear. In this study, unloading caused by weightlessness was simulated by using a random position machine (RPM). Osteocytic MLO-Y4 cells were subjected to 2 h of RPM treatment, and levels of Cx43 mRNA and total and cell surface expressed protein were determined by quantitative real-time PCR, western blotting, and biotinylation analysis. Although mRNA was elevated by RPM, total protein level of Cx43 was not altered; however, surface biotinylated Cx43 was significantly reduced. Interestingly, RPM promoted the retention of Cx43 in the Golgi apparatus detected by co-immunofluorescence with antibodies against Cx43 and 58 K Golgi marker protein. Dye uptake assay showed that hemichannels were induced open after RPM for 2 h. Consistently, prostaglandin E <subscript>2</subscript> release was increased and this increase was completely attenuated with the treatment of a Cx43 hemichannel blocking antibody. Together, this study demonstrates increased activity of Cx43 hemichannels to RPM, and active Cx43 hemichannels with prostaglandin E <subscript>2</subscript> release are likely to module biological function under simulated weightless conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1195-1202, 2017.<br /> (© 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.)
Details
- Language :
- English
- ISSN :
- 1554-527X
- Volume :
- 35
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
- Publication Type :
- Academic Journal
- Accession number :
- 26945892
- Full Text :
- https://doi.org/10.1002/jor.23224