Back to Search Start Over

Isolation and characterization of extremely halophilic CO-oxidizing Euryarchaeota from hypersaline cinders, sediments and soils and description of a novel CO oxidizer, Haloferax namakaokahaiae Mke2.3T, sp. nov.

Authors :
McDuff S
King GM
Neupane S
Myers MR
Source :
FEMS microbiology ecology [FEMS Microbiol Ecol] 2016 Apr; Vol. 92 (4), pp. fiw028. Date of Electronic Publication: 2016 Feb 22.
Publication Year :
2016

Abstract

The phylogenetic affiliations of organisms responsible for aerobic CO oxidation in hypersaline soils and sediments were assessed using media containing 3.8 M NaCl. CO-oxidizing strains of the euryarchaeotes, Haloarcula, Halorubrum, Haloterrigena and Natronorubrum, were isolated from the Bonneville Salt Flats (UT) and Atacama Desert salterns (Chile). A halophilic euryarchaeote, Haloferax strain Mke2.3(T), was isolated from Hawai'i Island saline cinders. Haloferax strain Mke2.3(T) was most closely related to Haloferax larsenii JCM 13917(T) (97.0% 16S rRNA sequence identity). It grew with a limited range of substrates, and oxidized CO at a headspace concentration of 0.1%. However, it did not grow with CO as a sole carbon and energy source. Its ability to oxidize CO, its polar lipid composition, substrate utilization and numerous other traits distinguished it from H. larsenii JCM 13917(T), and supported designation of the novel isolate as Haloferax namakaokahaiae Mke2.3(T), sp. nov (= DSM 29988, = LMG 29162). CO oxidation was also documented for 'Natronorubrum thiooxidans' HG1 (Sorokin, Tourova and Muyzer 2005), N. bangense (Xu, Zhou and Tian 1999) and N. sulfidifaciens AD2(T) (Cui et al. 2007). Collectively, these results established a previously unsuspected capacity for extremely halophilic aerobic CO oxidation, and indicated that the trait might be widespread among the Halobacteriaceae, and occur in a wide range of hypersaline habitats.<br /> (© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1574-6941
Volume :
92
Issue :
4
Database :
MEDLINE
Journal :
FEMS microbiology ecology
Publication Type :
Academic Journal
Accession number :
26906098
Full Text :
https://doi.org/10.1093/femsec/fiw028