Back to Search
Start Over
Mineralization of sulfamethizole in photo-Fenton and photo-Fenton-like systems.
- Source :
-
Water science and technology : a journal of the International Association on Water Pollution Research [Water Sci Technol] 2016; Vol. 73 (4), pp. 746-50. - Publication Year :
- 2016
-
Abstract
- In this investigation, UV/H2O2, UV/H2O2/Fe(2+) (photo-Fenton) and UV/H2O2/Fe(3+) (photo-Fenton-like) systems were used to mineralize sulfamethizole (SFZ). The optimal doses of H2O2 (1-20 mM) in UV/H2O2 and iron (0.1-1 mM) in photo-Fenton and photo-Fenton-like systems were determined. Direct photolysis by UV irradiation and direct oxidation by added H2O2, Fe(2+) and Fe(3+) did not mineralize SFZ. The optimal dose of H2O2 was 10 mM in UV/H2O2 and that of iron (Fe(2+) or Fe(3+)) was 0.2 mM in both UV/H2O2/Fe(2+) and UV/H2O2/Fe(3+) systems. Under the best experimental conditions and after 60 min of reaction, the SFZ mineralization percentages in UV/H2O2, UV/H2O2/Fe(2+) and UV/H2O2/Fe(3+) systems were 16, 90 and 88%, respectively. The UV/H2O2/Fe(2+) and UV/H2O2/Fe(3+) systems effectively mineralized SFZ.
Details
- Language :
- English
- ISSN :
- 0273-1223
- Volume :
- 73
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Water science and technology : a journal of the International Association on Water Pollution Research
- Publication Type :
- Academic Journal
- Accession number :
- 26901716
- Full Text :
- https://doi.org/10.2166/wst.2015.554