Back to Search Start Over

Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications.

Authors :
Chan EC
Kuo SM
Kong AM
Morrison WA
Dusting GJ
Mitchell GM
Lim SY
Liu GS
Source :
PloS one [PLoS One] 2016 Feb 22; Vol. 11 (2), pp. e0149799. Date of Electronic Publication: 2016 Feb 22 (Print Publication: 2016).
Publication Year :
2016

Abstract

Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo.

Details

Language :
English
ISSN :
1932-6203
Volume :
11
Issue :
2
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
26900837
Full Text :
https://doi.org/10.1371/journal.pone.0149799