Back to Search Start Over

Targeting Adenine Nucleotide Translocase-2 (ANT2) to Overcome Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in Non-Small Cell Lung Cancer.

Authors :
Jang JY
Kim YG
Nam SJ
Keam B
Kim TM
Jeon YK
Kim CW
Source :
Molecular cancer therapeutics [Mol Cancer Ther] 2016 Jun; Vol. 15 (6), pp. 1387-96. Date of Electronic Publication: 2016 Feb 16.
Publication Year :
2016

Abstract

EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy has achieved favorable clinical outcomes in non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, patients eventually develop resistance to EGFR-TKIs by several mechanisms. Adenine nucleotide translocase-2 (ANT2) is an oncogenic mitochondrial membrane-associated protein. We investigated the therapeutic potential of ANT2 inhibition to EGFR-TKI resistance in NSCLC using gefitinib-sensitive (PC9 and HCC827) and gefitinib-resistant (H1975 and HCC827/GR) NSCLC cell lines. ANT2 was inhibited by transfecting cells with an ANT2-specific shRNA. ANT2 expression was elevated in the H1975 and HCC827/GR cells compared with the PC9 and HCC827 cells. ANT2 upregulation in gefitinib-resistant cells was associated with increased SP1 binding to the ANT2 promoter. ANT2-specific shRNA decreased NSCLC cell viability. Moreover, ANT2-specific shRNA sensitized the H1975 and HCC827/GR cells to gefitinib, accompanied by HSP90 and EGFR downregulation. ANT2-specific shRNA also inactivated the PI3K/Akt signaling pathway in the H1975 and HCC827/GR cells, which was mediated by the suppression of miR-221/222 levels and by the subsequent restoration of PTEN. In EGFR-TKI-treated NSCLC patients, ANT2 expression was higher in patients exhibiting poor responses compared with patients showing excellent responses. Furthermore, ANT2 expression increased in tumor tissues biopsied after acquiring gefitinib resistance compared with tissues before gefitinib treatment. These findings suggest that ANT2 overexpression contributes to EGFR-TKI resistance in NSCLC and that ANT2 targeting may be considered a novel strategy for overcoming this resistance. Mol Cancer Ther; 15(6); 1387-96. ©2016 AACR.<br /> (©2016 American Association for Cancer Research.)

Details

Language :
English
ISSN :
1538-8514
Volume :
15
Issue :
6
Database :
MEDLINE
Journal :
Molecular cancer therapeutics
Publication Type :
Academic Journal
Accession number :
26883272
Full Text :
https://doi.org/10.1158/1535-7163.MCT-15-0089