Back to Search
Start Over
Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition.
- Source :
-
Current biology : CB [Curr Biol] 2016 Mar 07; Vol. 26 (5), pp. 640-6. Date of Electronic Publication: 2016 Feb 11. - Publication Year :
- 2016
-
Abstract
- Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [1]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [2, 3], is a shoot-to-root mobile signal that mediates light promotion of root growth and nitrate uptake. Shoot-derived HY5 auto-activates root HY5 and also promotes root nitrate uptake by activating NRT2.1, a gene encoding a high-affinity nitrate transporter [4]. In the shoot, HY5 promotes carbon assimilation and translocation, whereas in the root, HY5 activation of NRT2.1 expression and nitrate uptake is potentiated by increased carbon photoassimilate (sucrose) levels. We further show that HY5 function is fluence-rate modulated and enables homeostatic maintenance of carbon-nitrogen balance in different light environments. Thus, mobile HY5 coordinates light-responsive carbon and nitrogen metabolism, and hence shoot and root growth, in a whole-organismal response to ambient light fluctuations.<br /> (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Subjects :
- Anion Transport Proteins metabolism
Arabidopsis genetics
Arabidopsis Proteins metabolism
Basic-Leucine Zipper Transcription Factors metabolism
Nuclear Proteins metabolism
Plant Roots metabolism
Plant Shoots metabolism
Signal Transduction
Anion Transport Proteins genetics
Arabidopsis physiology
Arabidopsis Proteins genetics
Basic-Leucine Zipper Transcription Factors genetics
Carbon metabolism
Gene Expression Regulation, Plant
Nitrogen metabolism
Nuclear Proteins genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1879-0445
- Volume :
- 26
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Current biology : CB
- Publication Type :
- Academic Journal
- Accession number :
- 26877080
- Full Text :
- https://doi.org/10.1016/j.cub.2015.12.066