Back to Search
Start Over
Alcohol withdrawal induces long-lasting spatial working memory impairments: relationship with changes in corticosterone response in the prefrontal cortex.
- Source :
-
Addiction biology [Addict Biol] 2017 Jul; Vol. 22 (4), pp. 898-910. Date of Electronic Publication: 2016 Feb 10. - Publication Year :
- 2017
-
Abstract
- This study intends to determine whether long-lasting glucocorticoids (GCs) dysregulation in the prefrontal cortex (PFC) or the dorsal hippocampus (dHPC) play a causal role in the maintenance of working memory (WM) deficits observed after alcohol withdrawal. Here, we report that C57/BL6 male mice submitted to 6 months alcohol consumption (12 percent v/v) followed by 1 (1W) or 6 weeks (6W) withdrawal periods exhibit WM deficits in a spatial alternation task and an exaggerated corticosterone rise during and after memory testing in the PFC but not the dHPC. In contrast, emotional reactivity evaluated in a plus-maze is altered only in the 1W group. No behavioral alterations are observed in mice still drinking alcohol. To determine the causal role of corticosterone in the withdrawal-associated long-lasting WM deficits, we further show that a single intraperitoneal injection injection of metyrapone (an inhibitor of corticosterone synthesis) 30 minutes before testing, prevents withdrawal-associated WM deficits and reestablishes PFC activity, as assessed by increased phosphorylated C-AMP Response Element-binding protein (CREB) immunoreactivity in withdrawn mice. Finally, we show that intra-PFC blockade of mineralocorticoid receptors by infusion of spironolactone and, to a lesser extent, of GCs receptors by injection of mifepristone reverses the WM deficits induced by withdrawal whereas the same injections into the dHPC do not. Overall, our study evidences that long-lasting GCs dysfunction selectively in the PFC is responsible for the emergence and maintenance of WM impairments after withdrawal and that blocking prefrontal mineralocorticoid receptors receptors restores WM in withdrawn animals.<br /> (© 2016 Society for the Study of Addiction.)
- Subjects :
- Alcoholism blood
Animals
Behavior, Animal drug effects
Disease Models, Animal
Hippocampus
Male
Memory Disorders blood
Mice
Mice, Inbred C57BL
Prefrontal Cortex drug effects
Substance Withdrawal Syndrome blood
Alcoholism complications
Corticosterone blood
Memory Disorders chemically induced
Memory, Short-Term drug effects
Prefrontal Cortex metabolism
Spatial Memory drug effects
Substance Withdrawal Syndrome complications
Subjects
Details
- Language :
- English
- ISSN :
- 1369-1600
- Volume :
- 22
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Addiction biology
- Publication Type :
- Academic Journal
- Accession number :
- 26860616
- Full Text :
- https://doi.org/10.1111/adb.12371