Back to Search
Start Over
Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering.
- Source :
-
Microbial cell factories [Microb Cell Fact] 2016 Feb 04; Vol. 15, pp. 27. Date of Electronic Publication: 2016 Feb 04. - Publication Year :
- 2016
-
Abstract
- Background: (2S)-Pinocembrin is a chiral flavanone with versatile pharmacological and biological activities. Its health-promoting effects have spurred on research effects on the microbial production of (2S)-pinocembrin. However, an often-overlooked salient feature in the analysis of microbial (2S)-pinocembrin is its chirality.<br />Results: Here, we presented a full characterization of absolute configuration of microbial (2S)-pinocembrin from engineered Escherichia coli. Specifically, a transcriptome-wide search for genes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum, a plant rich in flavonoids, was first performed in the present study. A total of 104,180 unigenes were finally generated with an average length of 520 bp. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping assigned 26 unigenes, representing three enzyme families of 4-coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS) and chalcone isomerase(CHI), onto (2S)-pinocembrin biosynthetic pathway. A total of seven, three and one full-length candidates encoding 4CL, CHS and CHI were then verified by reverse transcription polymerase chain reaction, respectively. These candidates were screened by functional expression in E. coli individual or coupled multienzyme reaction systems based on metabolic engineering processes. Oc4CL1, OcCHS2 and OcCHI were identified to be bona fide genes encoding respective pathway enzymes of (2S)-pinocembrin biosynthesis. Then Oc4CL1, OcCHS2 and MsCHI from Medicago sativa, assembled as artificial gene clusters in different organizations, were used for fermentation production of (2S)-pinocembrin in E. coli. The absolute configuration of the resulting microbial pinocembrin at C-2 was assigned to be 2S-configured by combination of retention time, UV spectrum, LC-MS, NMR, optical rotation and circular dichroism spectroscopy. Improvement of (2S)-pinocembrin titres was then achieved by optimization of gene organizations, using of codon-optimized pathway enzymes and addition of cerulenin for increasing intracellular malonyl CoA pools. Overall, the optimized strain can produce (2S)-pinocembrin of 36.92 ± 4.1 mg/L.<br />Conclusions: High titre of (2S)-pinocembrin can be obtained from engineered E. coli by an efficient method. The fermentative production of microbial (2S)-pinocembrin in E. coli paved the way for yield improvement and further pharmacological testing.
- Subjects :
- Carbon-13 Magnetic Resonance Spectroscopy
Chromatography, High Pressure Liquid
Circular Dichroism
DNA, Complementary genetics
DNA, Complementary isolation & purification
Fermentation
Flavanones chemistry
Gene Expression Regulation, Plant
Multigene Family
Proton Magnetic Resonance Spectroscopy
Recombinant Proteins metabolism
Biosynthetic Pathways genetics
Flavanones metabolism
Metabolic Engineering methods
Ornithogalum enzymology
Ornithogalum genetics
Transcriptome genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1475-2859
- Volume :
- 15
- Database :
- MEDLINE
- Journal :
- Microbial cell factories
- Publication Type :
- Academic Journal
- Accession number :
- 26846670
- Full Text :
- https://doi.org/10.1186/s12934-016-0424-8