Back to Search Start Over

ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.

Authors :
Chen X
Jung JG
Shajahan-Haq AN
Clarke R
Shih IeM
Wang Y
Magnani L
Wang TL
Xuan J
Source :
Nucleic acids research [Nucleic Acids Res] 2016 Apr 20; Vol. 44 (7), pp. e65. Date of Electronic Publication: 2015 Dec 23.
Publication Year :
2016

Abstract

Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq) has greatly improved the reliability with which transcription factor binding sites (TFBSs) can be identified from genome-wide profiling studies. Many computational tools are developed to detect binding events or peaks, however the robust detection of weak binding events remains a challenge for current peak calling tools. We have developed a novel Bayesian approach (ChIP-BIT) to reliably detect TFBSs and their target genes by jointly modeling binding signal intensities and binding locations of TFBSs. Specifically, a Gaussian mixture model is used to capture both binding and background signals in sample data. As a unique feature of ChIP-BIT, background signals are modeled by a local Gaussian distribution that is accurately estimated from the input data. Extensive simulation studies showed a significantly improved performance of ChIP-BIT in target gene prediction, particularly for detecting weak binding signals at gene promoter regions. We applied ChIP-BIT to find target genes from NOTCH3 and PBX1 ChIP-seq data acquired from MCF-7 breast cancer cells. TF knockdown experiments have initially validated about 30% of co-regulated target genes identified by ChIP-BIT as being differentially expressed in MCF-7 cells. Functional analysis on these genes further revealed the existence of crosstalk between Notch and Wnt signaling pathways.<br /> (© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Details

Language :
English
ISSN :
1362-4962
Volume :
44
Issue :
7
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
26704972
Full Text :
https://doi.org/10.1093/nar/gkv1491