Back to Search
Start Over
Genetic heterogeneity after first-line chemotherapy in high-grade serous ovarian cancer.
- Source :
-
European journal of cancer (Oxford, England : 1990) [Eur J Cancer] 2016 Jan; Vol. 53, pp. 51-64. Date of Electronic Publication: 2015 Dec 13. - Publication Year :
- 2016
-
Abstract
- Background: Most high-grade serous ovarian carcinoma (HGSOC) patients benefit from first-line platinum-based chemotherapy, but progressively develop resistance during subsequent lines. Re-activating BRCA1 or MDR1 mutations can underlie platinum resistance in end-stage patients. However, little is known about resistance mechanisms occurring after a single line of platinum, when patients still qualify for other treatments.<br />Methods: In 31 patients with primary platinum-sensitive HGSOC, we profiled tumours collected during debulking surgery before and after first-line chemotherapy using whole-exome sequencing and single nucleotide polymorphism profiling.<br />Results: Besides germline BRCA1/2 mutations, we observed frequent loss-of-heterozygosity in homologous recombination (HR) genes and mutation spectra characteristic of HR-deficiency in all tumours. At relapse, tumours differed considerably from their primary counterparts. There was, however, no evidence of events reactivating the HR pathway, also not in tumours resistant to second-line platinum. Instead, a platinum score of 13 copy number regions, among other genes including MECOM, CCNE1 and ERBB2, correlated with platinum-free interval (PFI) after first-line therapy, whereas an increase of this score in recurrent tumours predicted the change in PFI during subsequent therapy.<br />Conclusions: Already after a single line of platinum, there is huge variability between primary and recurrent tumours, advocating that in HGSOC biopsies need to be collected at relapse to tailor treatment options to the underlying genetic profile. Nevertheless, all primary platinum-sensitive HGSOCs remained HR-deficient, irrespective of whether they became resistant to second-line platinum, further suggesting these tumours qualify for second-line Poly APD ribose polymerase (PARP) inhibitor treatment. Finally, chromosomal instability contributes to acquired resistance after a single line of platinum therapy.<br /> (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Subjects :
- Adult
Aged
Antineoplastic Agents therapeutic use
Carcinoma, Ovarian Epithelial
DNA-Binding Proteins genetics
Drug Resistance, Neoplasm genetics
Fanconi Anemia Complementation Group A Protein genetics
Female
Genes, BRCA1
Genes, BRCA2
Genetic Heterogeneity
Humans
Middle Aged
Mutation genetics
Neoplasm Recurrence, Local genetics
Neoplasms, Glandular and Epithelial drug therapy
Ovarian Neoplasms drug therapy
Platinum Compounds therapeutic use
Polymorphism, Single Nucleotide genetics
Young Adult
Neoplasms, Glandular and Epithelial genetics
Ovarian Neoplasms genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1879-0852
- Volume :
- 53
- Database :
- MEDLINE
- Journal :
- European journal of cancer (Oxford, England : 1990)
- Publication Type :
- Academic Journal
- Accession number :
- 26693899
- Full Text :
- https://doi.org/10.1016/j.ejca.2015.11.001