Back to Search Start Over

Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body.

Authors :
Irianni-Renno M
Akhbari D
Olson MR
Byrne AP
Lefèvre E
Zimbron J
Lyverse M
Sale TC
De Long SK
Source :
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2016 Apr; Vol. 100 (7), pp. 3347-60. Date of Electronic Publication: 2015 Dec 22.
Publication Year :
2016

Abstract

Advances in our understanding of the microbial ecology at sites impacted by light non-aqueous phase liquids (LNAPLs) are needed to drive development of optimized bioremediation technologies, support longevity models, and develop culture-independent molecular tools. In this study, depth-resolved characterization of geochemical parameters and microbial communities was conducted for a shallow hydrocarbon-impacted aquifer. Four distinct zones were identified based on microbial community structure and geochemical data: (i) an aerobic, low-contaminant mass zone at the top of the vadose zone; (ii) a moderate to high-contaminant mass, low-oxygen to anaerobic transition zone in the middle of the vadose zone; (iii) an anaerobic, high-contaminant mass zone spanning the bottom of the vadose zone and saturated zone; and (iv) an anaerobic, low-contaminant mass zone below the LNAPL body. Evidence suggested that hydrocarbon degradation is mediated by syntrophic fermenters and methanogens in zone III. Upward flux of methane likely contributes to promoting anaerobic conditions in zone II by limiting downward flux of oxygen as methane and oxygen fronts converge at the top of this zone. Observed sulfate gradients and microbial communities suggested that sulfate reduction and methanogenesis both contribute to hydrocarbon degradation in zone IV. Pyrosequencing revealed that Syntrophus- and Methanosaeta-related species dominate bacterial and archaeal communities, respectively, in the LNAPL body below the water table. Observed phylotypes were linked with in situ anaerobic hydrocarbon degradation in LNAPL-impacted soils.

Details

Language :
English
ISSN :
1432-0614
Volume :
100
Issue :
7
Database :
MEDLINE
Journal :
Applied microbiology and biotechnology
Publication Type :
Academic Journal
Accession number :
26691516
Full Text :
https://doi.org/10.1007/s00253-015-7106-z