Back to Search Start Over

Predictive morphology, stoichiometry and structure of surface species in supported Ru nanoparticles under H2 and CO atmospheres from combined experimental and DFT studies.

Authors :
Comas-Vives A
Furman K
Gajan D
Akatay MC
Lesage A
Ribeiro FH
Copéret C
Source :
Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2016 Jan 21; Vol. 18 (3), pp. 1969-79. Date of Electronic Publication: 2015 Dec 21.
Publication Year :
2016

Abstract

Further understanding of the chemisorption properties towards CO and H2 on silica-supported Ru nanoparticles is crucial in order to rationalize their high activity towards methanation, Fischer Tropsch and Water Gas Shift reactions. Ru nanoparticles having the same chemisorption properties towards CO and H2 were synthesized on different silica-based supports in order to combine various analytical techniques and obtain complimentary detailed information on their structure; while silica spheres were used in order to obtain high-resolution TEM images of the Ru nanoparticles, high surface area silica-based material (SBA) allowed CO chemisorption to be monitored by (13)C NMR spectroscopy. In addition, a model of the hcp-based Ru nanoparticles observed by HR-TEM was used to predict by ab initio calculations the CO and H2 coverages on the Ru nanoparticle under different conditions of interest in catalysis. For both adsorbates we show and quantify how the adsorption properties of the nanoparticle differ from the commonly used slab models. For the case of CO we show how the top, bridge and hollow sites can be present on the Ru nanoparticle, providing a description at atomistic level in good agreement with the IR spectroscopy measurements.

Details

Language :
English
ISSN :
1463-9084
Volume :
18
Issue :
3
Database :
MEDLINE
Journal :
Physical chemistry chemical physics : PCCP
Publication Type :
Academic Journal
Accession number :
26686546
Full Text :
https://doi.org/10.1039/c5cp06710c