Back to Search Start Over

Application of liquid chromatography/electrospray ionization ion trap tandem mass spectrometry for the evaluation of global nucleic acids: methylation in garden cress under exposure to CuO nanoparticles.

Authors :
Alcazar Magana A
Wrobel K
Corrales Escobosa AR
Wrobel K
Source :
Rapid communications in mass spectrometry : RCM [Rapid Commun Mass Spectrom] 2016 Jan 15; Vol. 30 (1), pp. 209-20.
Publication Year :
2016

Abstract

Rationale: A full understanding of the biological impact of nanomaterials demands analytical procedures suitable for the detection/quantification of epigenetic changes that occur in the exposed organisms. Here, the effect of CuO nanoparticles (NPs) on global methylation of nucleic acids in Lepidium sativum was evaluated by liquid chromatography/ion trap mass spectrometry. Enhanced selectivity toward cytosine-containing nucleosides was achieved by using their proton-bound dimers formed in positive electrospray ionization (ESI(+)) as precursor ions for multiple reaction monitoring (MRM) quantification based on one or two ion transitions.<br />Methods: Plants were exposed to CuO NPs (0-1000 mg L(-1)); nucleic acid extracts were washed with bathocuproine disulfate; nucleosides were separated on a Luna C18 column coupled via ESI(+) to an AmaZon SL mass spectrometer (Bruker Daltonics). Cytidine, 2´-deoxycytidine, 5-methylcytidine, 5-methyl-2´-deoxycytidine and 5-hydroxymethyl-2´-deoxycytidine were quantified by MRM based on MS(3) ([2M+H](+)/[M+H](+)/[M+H-132](+) or [M+H-116](+)) and MS(2) ([2M+H](+)/[M+H](+) ).<br />Results: Bathocuproine disulfate, added as Cu(I) complexing agent, allowed for elimination of [2M+Cu](+) adducts from the mass spectra. Poorer instrumental detection limits were obtained for MS(3) (20-120 fmol) as compared to MS(2) (9.0-41 fmol); however, two ion transitions helped to eliminate matrix effects in plant extracts. The procedure was tested by analyzing salmon sperm DNA (Sigma) and applied for the evaluation of DNA and RNA methylation in plants; in the absence of NPs, 13.03% and 0.92% methylated cytosines were found in DNA and RNA, respectively; for NPs concentration >50 mg L(-1), DNA hypomethylation was observed with respect to unexposed plants. RNA methylation did not present significant changes upon plant exposure; 5-hydroxymethyl-2´-deoxycytidine was not detected in any sample.<br />Conclusions: The MRM quantification proposed here of cytosine-containing nucleosides using their proton-bound homo-dimers as precursor ions proved its utility for the assessment of global methylation of DNA and RNA in plants under stress imposed by CuO NPs. Detection of copper adducts with cytosine-containing ions, and their elimination by washing extracts with Cu(I) chelator, calls for further investigation.<br /> (Copyright © 2015 John Wiley & Sons, Ltd.)

Details

Language :
English
ISSN :
1097-0231
Volume :
30
Issue :
1
Database :
MEDLINE
Journal :
Rapid communications in mass spectrometry : RCM
Publication Type :
Academic Journal
Accession number :
26661988
Full Text :
https://doi.org/10.1002/rcm.7440