Back to Search Start Over

A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes.

Authors :
Watermeyer JM
Hale VL
Hackett F
Clare DK
Cutts EE
Vakonakis I
Fleck RA
Blackman MJ
Saibil HR
Source :
Blood [Blood] 2016 Jan 21; Vol. 127 (3), pp. 343-51. Date of Electronic Publication: 2015 Dec 04.
Publication Year :
2016

Abstract

Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.<br /> (© 2016 by The American Society of Hematology.)

Details

Language :
English
ISSN :
1528-0020
Volume :
127
Issue :
3
Database :
MEDLINE
Journal :
Blood
Publication Type :
Academic Journal
Accession number :
26637786
Full Text :
https://doi.org/10.1182/blood-2015-10-674002