Back to Search Start Over

Catalytic decomposition of gaseous 1,2-dichlorobenzene over CuOx/TiO₂ and CuOx/TiO₂-CNTs catalysts: Mechanism and PCDD/Fs formation.

Authors :
Wang QL
Huang QX
Wu HF
Lu SY
Wu HL
Li XD
Yan JH
Source :
Chemosphere [Chemosphere] 2016 Feb; Vol. 144, pp. 2343-50. Date of Electronic Publication: 2015 Nov 22.
Publication Year :
2016

Abstract

Gaseous 1,2-dichlorobenzene (1,2-DCBz) was catalytically decomposed in a fixed-bed catalytic reactor using composite copper-based titanium oxide (CuOx/TiO2) catalysts with different copper ratios. Carbon nanotubes (CNTs) were introduced to produce novel CuOx/TiO2-CNTs catalysts by the sol-gel method. The catalytic performances of CuOx/TiO2 and CuOx/TiO2-CNTs on 1,2-DCBz oxidative destruction under different temperatures (150-350 °C) were experimentally examined and the correlation between catalyst structure and catalytic activity was characterized and the role of oxygen in catalytic reaction was discussed. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) generation during 1,2-DCBz catalytic oxidation by CuOx/TiO2-CNTs composite catalyst was also examined. Results indicate that the 1,2-DCBz destruction/removal efficiencies of CuOx (4 wt%)/TiO2 catalyst at 150 °C and 350 °C with a GHSV of 3400 h(-1) are 59% and 94% respectively and low-temperature (150 °C) catalytic activity of CuOx/TiO2 on 1,2-DCBz oxidation can be improved from 59 to 77% when CNTs are introduced. Furthermore, oxygen either in catalyst or from reaction atmosphere is indispensible in reaction. The former is offered to activate and oxidize the 1,2-DCBz adsorbed on catalyst, thus can be generally consumed during reaction and the oxygen content in catalyst is observed lost from 39.9 to 35.0 wt% after reacting under inert atmosphere; the latter may replenish the vacancy in catalyst created by the consumed oxygen thus extends the catalyst life and raises the destruction/removal efficiency. The introduction of CNTs also increases the Cu(2+)/Cu(+) ratio, chemisorbed oxygen concentration and surface lattice oxygen binding energy which are closely related with catalytic activity. PCDD/Fs is confirmed to be formed when 1,2-DCBz catalytically oxidized by CuOx/TiO2-CNTs composite catalyst with sufficient oxygen (21%), proper temperature (350 °C) and high concentration of 1,2-DCBz feed (120 ppm).<br /> (Copyright © 2015 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
144
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
26606189
Full Text :
https://doi.org/10.1016/j.chemosphere.2015.10.097