Back to Search Start Over

Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska.

Authors :
Gulick SP
Jaeger JM
Mix AC
Asahi H
Bahlburg H
Belanger CL
Berbel GB
Childress L
Cowan E
Drab L
Forwick M
Fukumura A
Ge S
Gupta S
Kioka A
Konno S
LeVay LJ
März C
Matsuzaki KM
McClymont EL
Moy C
Müller J
Nakamura A
Ojima T
Ribeiro FR
Ridgway KD
Romero OE
Slagle AL
Stoner JS
St-Onge G
Suto I
Walczak MD
Worthington LL
Bailey I
Enkelmann E
Reece R
Swartz JM
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2015 Dec 08; Vol. 112 (49), pp. 15042-7. Date of Electronic Publication: 2015 Nov 23.
Publication Year :
2015

Abstract

Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.

Details

Language :
English
ISSN :
1091-6490
Volume :
112
Issue :
49
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
26598689
Full Text :
https://doi.org/10.1073/pnas.1512549112