Back to Search Start Over

Surfactant modulated aggregation induced enhancement of emission (AIEE)--a simple demonstration to maximize sensor activity.

Authors :
Bhowmick R
Saleh Musha Islam A
Katarkar A
Chaudhuri K
Ali M
Source :
The Analyst [Analyst] 2016 Jan 07; Vol. 141 (1), pp. 225-35. Date of Electronic Publication: 2015 Nov 19.
Publication Year :
2016

Abstract

A new type of easily synthesized rhodamine-based chemosensor L(3), with potential NO2 donor atoms, selectively and rapidly recognizes Hg(2+) ions in the presence of all biologically relevant metal ions and toxic heavy metals. A very low detection limit (78 nM) along with cytoplasmic cell imaging applications with no or negligible cytotoxicity indicate good potential for in vitro/in vivo cell imaging studies. SEM and TEM studies reveal strongly agglomerated aggregations in the presence of 5 mM SDS which turn into isolated core shell microstructures in the presence of 9 mM SDS. The presence of SDS causes an enhanced quantum yield (φ) and stability constant (Kf) compared to those in the absence of SDS. Again, the FI of the [L(3)-Hg](2+) complex in an aqueous SDS (9 mM) medium is unprecedentedly enhanced (∼143 fold) compared to that in the absence of SDS. All of these observations clearly manifest in the enhanced rigidity of the [L(3)-Hg](2+) species in the micro-heterogeneous environment significantly restricting its dynamic movements. This phenomenon may be ascribed as an aggregation induced emission enhancement (AIEE). The fluorescence anisotropy assumes a maximum at 5 mM SDS due to strong trapping (sandwiching) of the doubly positively charged [L(3)-Hg](2+) complex between two co-facial laminar microstructures of SDS under pre-miceller conditions where there is a strong electrostatic interaction that causes an improved inhibition to dynamic movement of the probe-mercury complex. On increasing the SDS concentration there is a phase transition in the SDS microstructures and micellization starts to prevail at SDS ≥ 7.0 mM. The doubly positively charged [L(3)-Hg](2+) complex is trapped inside the hydrophobic inner core of the micelle which is apparent from the failure to quench the fluorescence of the complex on adding 10 equivalents of H2EDTA(2-) solution but in the absence of SDS it is quenched effectively.

Details

Language :
English
ISSN :
1364-5528
Volume :
141
Issue :
1
Database :
MEDLINE
Journal :
The Analyst
Publication Type :
Academic Journal
Accession number :
26584051
Full Text :
https://doi.org/10.1039/c5an01916h