Back to Search Start Over

Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code.

Authors :
Hoernes TP
Clementi N
Faserl K
Glasner H
Breuker K
Lindner H
Hüttenhofer A
Erlacher MD
Source :
Nucleic acids research [Nucleic Acids Res] 2016 Jan 29; Vol. 44 (2), pp. 852-62. Date of Electronic Publication: 2015 Nov 17.
Publication Year :
2016

Abstract

Nucleotide modifications within RNA transcripts are found in every organism in all three domains of life. 6-methyladeonsine (m(6)A), 5-methylcytosine (m(5)C) and pseudouridine (Ψ) are highly abundant nucleotide modifications in coding sequences of eukaryal mRNAs, while m(5)C and m(6)A modifications have also been discovered in archaeal and bacterial mRNAs. Employing in vitro translation assays, we systematically investigated the influence of nucleotide modifications on translation. We introduced m(5)C, m(6)A, Ψ or 2'-O-methylated nucleotides at each of the three positions within a codon of the bacterial ErmCL mRNA and analyzed their influence on translation. Depending on the respective nucleotide modification, as well as its position within a codon, protein synthesis remained either unaffected or was prematurely terminated at the modification site, resulting in reduced amounts of the full-length peptide. In the latter case, toeprint analysis of ribosomal complexes was consistent with stalling of translation at the modified codon. When multiple nucleotide modifications were introduced within one codon, an additive inhibitory effect on translation was observed. We also identified the m(5)C modification to alter the amino acid identity of the corresponding codon, when positioned at the second codon position. Our results suggest a novel mode of gene regulation by nucleotide modifications in bacterial mRNAs.<br /> (© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Details

Language :
English
ISSN :
1362-4962
Volume :
44
Issue :
2
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
26578598
Full Text :
https://doi.org/10.1093/nar/gkv1182