Back to Search
Start Over
How Epigallocatechin-3-gallate and Tetracycline Interact with the Josephin Domain of Ataxin-3 and Alter Its Aggregation Mode.
- Source :
-
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2015 Dec 07; Vol. 21 (50), pp. 18383-93. Date of Electronic Publication: 2015 Nov 05. - Publication Year :
- 2015
-
Abstract
- Epigallocatechin-3-gallate (EGCG) and tetracycline are two known inhibitors of amyloid aggregation able to counteract the fibrillation of most of the proteins involved in neurodegenerative diseases. We have recently investigated their effect on ataxin-3 (AT3), the polyglutamine-containing protein responsible for spinocerebellar ataxia type 3. We previously showed that EGCG and tetracycline can contrast the aggregation process and toxicity of expanded AT3, although by different mechanisms. Here, we have performed further experiments by using the sole Josephin domain (JD) to further elucidate the mechanism of action of the two compounds. By protein solubility assays and FTIR spectroscopy we have first observed that EGCG and tetracycline affect the JD aggregation essentially in the same way displayed when acting on the full-length expanded AT3. Then, by saturation transfer difference (STD) NMR experiments, we have shown that EGCG binds both the monomeric and the oligomeric JD form, whereas tetracycline can only interact with the oligomeric one. Surface plasmon resonance (SPR) analysis has confirmed the capability of the sole EGCG to bind monomeric JD, although with a KD value suggestive for a non-specific interaction. Our investigations provide new details on the JD interaction with EGCG and tetracycline, which could explain the different mechanisms by which the two compounds reduce the toxicity of AT3.<br /> (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Subjects :
- Amyloid metabolism
Ataxin-3 pharmacology
Catechin chemistry
Catechin pharmacology
Humans
Nerve Tissue Proteins metabolism
Peptides
Spectroscopy, Fourier Transform Infrared
Tetracycline pharmacology
Amyloid antagonists & inhibitors
Amyloid chemistry
Ataxin-3 chemistry
Catechin analogs & derivatives
Nerve Tissue Proteins chemistry
Neuroprotective Agents chemistry
Neuroprotective Agents pharmacology
Repressor Proteins chemistry
Tetracycline chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1521-3765
- Volume :
- 21
- Issue :
- 50
- Database :
- MEDLINE
- Journal :
- Chemistry (Weinheim an der Bergstrasse, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 26538519
- Full Text :
- https://doi.org/10.1002/chem.201503086