Back to Search
Start Over
Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.
- Source :
-
PloS one [PLoS One] 2015 Nov 04; Vol. 10 (11), pp. e0139483. Date of Electronic Publication: 2015 Nov 04 (Print Publication: 2015). - Publication Year :
- 2015
-
Abstract
- Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.
- Subjects :
- Animals
Birefringence
Disease Models, Animal
Dystrophin deficiency
Larva genetics
Muscle Contraction drug effects
Muscle Fibers, Skeletal drug effects
Muscle Fibers, Skeletal physiology
Muscle, Skeletal chemistry
Muscle, Skeletal physiopathology
Muscular Dystrophies metabolism
Muscular Dystrophies pathology
Muscular Dystrophies prevention & control
Sulfonamides pharmacology
Toluene analogs & derivatives
Toluene pharmacology
Zebrafish growth & development
Zebrafish Proteins deficiency
Dystrophin genetics
Laminin genetics
Zebrafish genetics
Zebrafish Proteins genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 10
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 26536238
- Full Text :
- https://doi.org/10.1371/journal.pone.0139483