Back to Search Start Over

Understanding Variability To Reduce the Energy and GHG Footprints of U.S. Ethylene Production.

Authors :
Yao Y
Graziano DJ
Riddle M
Cresko J
Masanet E
Source :
Environmental science & technology [Environ Sci Technol] 2015 Dec 15; Vol. 49 (24), pp. 14704-16. Date of Electronic Publication: 2015 Nov 18.
Publication Year :
2015

Abstract

Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry's energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due to fugitive emissions from upstream natural gas production. On the basis of these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry's footprints moving forward.

Details

Language :
English
ISSN :
1520-5851
Volume :
49
Issue :
24
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
26523461
Full Text :
https://doi.org/10.1021/acs.est.5b03851