Back to Search Start Over

Gβγ Binds to the Extreme C Terminus of SNAP25 to Mediate the Action of Gi/o-Coupled G Protein-Coupled Receptors.

Authors :
Zurawski Z
Rodriguez S
Hyde K
Alford S
Hamm HE
Source :
Molecular pharmacology [Mol Pharmacol] 2016 Jan; Vol. 89 (1), pp. 75-83. Date of Electronic Publication: 2015 Oct 30.
Publication Year :
2016

Abstract

Gi/o-coupled G protein-coupled receptors can exert an inhibitory effect on vesicle release through several G protein-driven mechanisms, more than one of which may be concurrently present in individual presynaptic terminals. The synaptosomal-associated protein of 25 kDa (SNAP25) is a key downstream effector of Gβγ subunits. It has previously been shown that proteolytic cleavage of SNAP25 by botulinum toxin A reduces the ability of Gβγ to compete with the calcium sensor synaptotagmin 1 (Syt1) for binding to SNAP25 in a calcium-dependent manner. These truncated SNAP25 proteins sustain a low level of exocytosis but are unable to support serotonin-mediated inhibition of exocytosis in lamprey spinal neurons. Here, we generate a SNAP25 extreme C-terminal mutant that is deficient in its ability to bind Gβγ while retaining normal calcium-dependent Syt1 binding to soluble N-ethylmaleimide attachment protein receptor (SNARE) and vesicle release. The SNAP25Δ3 mutant, in which residue G204 is replaced by a stop codon, features a partial reduction in Gβ1γ2 binding in vitro as well as a partial reduction in the ability of the lamprey 5-hydroxytryptamine1b-type serotonin receptor to reduce excitatory postsynaptic current amplitudes, an effect previously shown to be mediated through the interaction of Gβγ with SNAP25. Syt1 calcium-dependent binding to SNAP25Δ3 was reduced by a small extent compared with the wild type. We conclude that the extreme C terminus of SNAP25 is a critical region for the Gβγ-SNARE interaction.<br /> (Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.)

Details

Language :
English
ISSN :
1521-0111
Volume :
89
Issue :
1
Database :
MEDLINE
Journal :
Molecular pharmacology
Publication Type :
Academic Journal
Accession number :
26519224
Full Text :
https://doi.org/10.1124/mol.115.101600