Back to Search Start Over

Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation.

Authors :
Sun X
Haas ME
Miao J
Mehta A
Graham MJ
Crooke RM
Pais de Barros JP
Wang JG
Aikawa M
Masson D
Biddinger SB
Source :
The Journal of biological chemistry [J Biol Chem] 2016 Jan 15; Vol. 291 (3), pp. 1115-22. Date of Electronic Publication: 2015 Oct 28.
Publication Year :
2016

Abstract

Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxrα in mice with hepatocyte-specific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxrα produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxrα, and LXRα was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXRα to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXRα and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis.<br /> (© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.)

Details

Language :
English
ISSN :
1083-351X
Volume :
291
Issue :
3
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
26511317
Full Text :
https://doi.org/10.1074/jbc.M115.668269