Back to Search Start Over

Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease.

Authors :
Meek TD
Dayton BD
Metcalf BW
Dreyer GB
Strickler JE
Gorniak JG
Rosenberg M
Moore ML
Magaard VW
Debouck C
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 1989 Mar; Vol. 86 (6), pp. 1841-5.
Publication Year :
1989

Abstract

Recombinant human immunodeficiency virus 1 (HIV-1) protease, purified from a bacterial expression system, processed a recombinant form of its natural substrate, Pr55gag, into protein fragments that possess molecular weights commensurate with those of the virion gag proteins. Molecular weights of the protease obtained under denaturing and nondenaturing conditions (11,000 and 22,000, respectively) and chemical crosslinking studies were consistent with a dimeric structure for the active enzyme. The protease appropriately cleaved the nonapeptide Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 between the tyrosine and proline residues. HIV-1 protease was sensitive to inactivators of the aspartic proteases. The aspartic protease inactivator 1,2-epoxy-3-(4-nitrophenoxy)propane produced irreversible, time-dependent inactivation of the protease. The pH-dependent kinetics of this inactivator were consistent with the requirement of an unprotonated carboxyl group in the active site of the enzyme, suggesting that HIV-1 protease is also an aspartic protease.

Details

Language :
English
ISSN :
0027-8424
Volume :
86
Issue :
6
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
2648384
Full Text :
https://doi.org/10.1073/pnas.86.6.1841