Back to Search Start Over

Tetra- versus Pentavalent Inhibitors of Cholera Toxin.

Authors :
Fu O
Pukin AV
van Ufford HC
Branson TR
Thies-Weesie DM
Turnbull WB
Visser GM
Pieters RJ
Source :
ChemistryOpen [ChemistryOpen] 2015 Aug; Vol. 4 (4), pp. 471-7. Date of Electronic Publication: 2015 Mar 21.
Publication Year :
2015

Abstract

The five B-subunits (CTB5) of the Vibrio cholerae (cholera) toxin can bind to the intestinal cell surface so the entire AB5 toxin can enter the cell. Simultaneous binding can occur on more than one of the monosialotetrahexosylganglioside (GM1) units present on the cell surface. Such simultaneous binding arising from the toxins multivalency is believed to enhance its affinity. Thus, blocking the initial attachment of the toxin to the cell surface using inhibitors with GM1 subunits has the potential to stop the disease. Previously we showed that tetravalent GM1 molecules were sub-nanomolar inhibitors of CTB5. In this study, we synthesized a pentavalent version and compared the binding and potency of penta- and tetravalent cholera toxin inhibitors, based on the same scaffold, for the first time. The pentavalent geometry did not yield major benefits over the tetravalent species, but it was still a strong inhibitor, and no major steric clashes occurred when binding the toxin. Thus, systems which can adopt more geometries, such as those described here, can be equally potent, and this may possibly be due to their ability to form higher-order structures or simply due to more statistical options for binding.

Details

Language :
English
ISSN :
2191-1363
Volume :
4
Issue :
4
Database :
MEDLINE
Journal :
ChemistryOpen
Publication Type :
Academic Journal
Accession number :
26478842
Full Text :
https://doi.org/10.1002/open.201500006