Back to Search
Start Over
Shear-Dependent Interactions of von Willebrand Factor with Factor VIII and Protease ADAMTS 13 Demonstrated at a Single Molecule Level by Atomic Force Microscopy.
- Source :
-
Analytical chemistry [Anal Chem] 2015 Oct 20; Vol. 87 (20), pp. 10299-305. Date of Electronic Publication: 2015 Sep 30. - Publication Year :
- 2015
-
Abstract
- Vital functions of mammals are only possible due to the behavior of blood to coagulate most efficiently in vessels with particularly high wall shear rates. This is caused by the functional changes of the von Willebrand Factor (VWF), which mediates coagulation of blood platelets (primary hemostasis) especially when it is stretched under shear stress. Our data show that shear stretching also affects other functions of VWF: Using a customized device to simulate shear conditions and to conserve the VWF molecules in their unstable, elongated conformation, we visualize at single molecule level by AFM that VWF is preferentially cleaved by the protease ADAMTS13 at higher shear rates. In contrast to this high shear-rate-selective behavior, VWF binds FVIII more effectively only below a critical shear rate of ∼30.000 s(-1), indicating that under harsh shear conditions FVIII is released from its carrier protein. This may be required to facilitate delivery of FVIII locally to promote secondary hemostasis.
- Subjects :
- ADAM Proteins metabolism
ADAM Proteins ultrastructure
ADAMTS13 Protein
Factor VIII metabolism
Factor VIII ultrastructure
Humans
Recombinant Proteins chemistry
Recombinant Proteins metabolism
Recombinant Proteins ultrastructure
von Willebrand Factor metabolism
von Willebrand Factor ultrastructure
ADAM Proteins chemistry
Factor VIII chemistry
Microscopy, Atomic Force
von Willebrand Factor chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1520-6882
- Volume :
- 87
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- Analytical chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 26369694
- Full Text :
- https://doi.org/10.1021/acs.analchem.5b02078