Back to Search
Start Over
Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament Organization.
- Source :
-
Biomacromolecules [Biomacromolecules] 2015 Oct 12; Vol. 16 (10), pp. 3313-21. Date of Electronic Publication: 2015 Sep 11. - Publication Year :
- 2015
-
Abstract
- The intermediate filament proteins keratin K8 and K18 constitute an essential part of the cytoskeleton in simple epithelial cell layers, structurally enforcing their mechanical resistance. K8/K18 heterodimers form extended filaments and higher-order structures including bundles and networks that bind to cell junctions. We study the assembly of these proteins in the presence of monovalent or divalent ions by small-angle X-ray scattering. We find that both ion species cause an increase of the filament diameter when their concentration is increased; albeit, much higher values are needed for the monovalent compared to the divalent ions for the same effect. Bundling occurs also for monovalent ions and at comparatively low concentrations of divalent ions, very different from vimentin intermediate filaments, a fibroblast-specific cytoskeleton component. We explain these differences by variations in charge and hydrophobicity patterns of the proteins. These differences may reflect the respective physiological situation in stationary cell layers versus single migrating fibroblasts.
Details
- Language :
- English
- ISSN :
- 1526-4602
- Volume :
- 16
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Biomacromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 26327161
- Full Text :
- https://doi.org/10.1021/acs.biomac.5b00965