Back to Search Start Over

Role of interleukin 33/ST2 axis in the immune-mediated pathogenesis of age-related macular degeneration.

Authors :
Theodoropoulou S
Copland DA
Liu J
Dick AD
Source :
Lancet (London, England) [Lancet] 2015 Feb 26; Vol. 385 Suppl 1, pp. S97.
Publication Year :
2015

Abstract

Background: Age-related macular degeneration is a leading cause of irreversible blindness. Altered immune responses drive degeneration, in response to oxidative stress and hypoxia-induced regulation of metabolism. We tested the hypothesis that toll-like receptor activation of retinal pigment epithelium and cellular metabolic switch upregulate interleukin 33, which acts through its receptor ST2 to activate both choroidal stromal fibroblasts and mast cells. By such mechanisms, the fibrosis and insidious degeneration, which we observe clinically, is accentuated.<br />Methods: Retinal pigment epithelial cells (ARPE-19 and B6-RPE07) were stimulated with toll-like receptor ligands, and energetic pathways were assessed through lactate production and the expression of glycolytic enzymes. Expression profile and secretion of interleukin 33 were determined by RT-PCR and western blots. Function and expression profile of bone-marrow-derived mast cells and human choroidal fibroblasts were also assessed.<br />Findings: The production of lactate, determining aerobic glycolysis, increased after stimulation of retinal pigment epithelial cells with LPS or poly(I:C), indicating an increase in the glycolytic activity after toll-like receptor stimulation. Increased levels of GLUT1 transcripts, and upregulation of GAPDH expression corroborated this finding. Furthermore, increased expression of interleukin 33 was dependent on a glycolytic metabolic switch and was enhanced under hypoxic conditions. ST2 was highly expressed in retinal pigment epithelium, choroidal mast cells, and choroidal fibroblasts in mouse and man. ST2+ bone-marrow-derived mast cells generated a spectrum of inflammatory cytokines and PGS2 when cultured with interleukin-33-rich retinal pigment epithelium supernatant. Interleukin-33 treatment impaired fibroblast migration and gel contraction alongside suppression of MMP-2 and MMP-9 expression.<br />Interpretation: Our data highlight an unrecognised link between retinal pigment epithelium bioenergetic status and tissue remodelling of choroidal stroma. Our findings suggest that the interleukin 33/ST2 axis and changing bioenergetic sources are potential therapeutic targets to inhibit progression of age-related macular degeneration.<br />Funding: National Institute for Health Research, National Eye Research Centre.<br /> (Copyright © 2015 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1474-547X
Volume :
385 Suppl 1
Database :
MEDLINE
Journal :
Lancet (London, England)
Publication Type :
Academic Journal
Accession number :
26312920
Full Text :
https://doi.org/10.1016/S0140-6736(15)60412-3