Back to Search Start Over

An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater.

Authors :
Christgen B
Scott K
Dolfing J
Head IM
Curtis TP
Source :
PloS one [PLoS One] 2015 Aug 25; Vol. 10 (8), pp. e0136108. Date of Electronic Publication: 2015 Aug 25 (Print Publication: 2015).
Publication Year :
2015

Abstract

The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm(-2), and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000 Ω, Nafion and ETFE achieved an average power density of 29 mWm(-2) compared to 24 mWm(-2) for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm(-2)) would not be sufficient to offset the costs of any membrane and separator tested.

Details

Language :
English
ISSN :
1932-6203
Volume :
10
Issue :
8
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
26305330
Full Text :
https://doi.org/10.1371/journal.pone.0136108