Back to Search
Start Over
Notch1 Activation or Loss Promotes HPV-Induced Oral Tumorigenesis.
- Source :
-
Cancer research [Cancer Res] 2015 Sep 15; Vol. 75 (18), pp. 3958-3969. Date of Electronic Publication: 2015 Aug 20. - Publication Year :
- 2015
-
Abstract
- Viral oncogene expression is insufficient for neoplastic transformation of human cells, so human papillomavirus (HPV)-associated cancers will also rely upon mutations in cellular oncogenes and tumor suppressors. However, it has been difficult so far to distinguish incidental mutations without phenotypic impact from causal mutations that drive the development of HPV-associated cancers. In this study, we addressed this issue by conducting a functional screen for genes that facilitate the formation of HPV E6/E7-induced squamous cell cancers in mice using a transposon-mediated insertional mutagenesis protocol. Overall, we identified 39 candidate driver genes, including Notch1, which unexpectedly was scored by gain- or loss-of-function mutations that were capable of promoting squamous cell carcinogenesis. Autochthonous HPV-positive oral tumors possessing an activated Notch1 allele exhibited high rates of cell proliferation and tumor growth. Conversely, Notch1 loss could accelerate the growth of invasive tumors in a manner associated with increased expression of matrix metalloproteinases and other proinvasive genes. HPV oncogenes clearly cooperated with loss of Notch1, insofar as its haploinsufficiency accelerated tumor growth only in HPV-positive tumors. In clinical specimens of various human cancers, there was a consistent pattern of NOTCH1 expression that correlated with invasive character, in support of our observations in mice. Although Notch1 acts as a tumor suppressor in mouse skin, we found that oncogenes enabling any perturbation in Notch1 expression promoted tumor growth, albeit via distinct pathways. Our findings suggest caution in interpreting the meaning of putative driver gene mutations in cancer, and therefore therapeutic efforts to target them, given the significant contextual differences in which such mutations may arise, including in virus-associated tumors.<br /> (©2015 American Association for Cancer Research.)
- Subjects :
- 4-Nitroquinoline-1-oxide toxicity
9,10-Dimethyl-1,2-benzanthracene toxicity
Animals
Breast Neoplasms pathology
Breast Neoplasms virology
Carcinogens
Carcinoma, Verrucous pathology
Carcinoma, Verrucous virology
DNA Transposable Elements
Disease Progression
Female
Humans
Mice
Mice, Transgenic
Mouth Neoplasms virology
Mutagenesis, Insertional
Neoplasm Invasiveness
Papilloma chemically induced
Papilloma pathology
Papilloma virology
Receptor, Notch1 deficiency
Receptor, Notch1 genetics
Skin Neoplasms chemically induced
Skin Neoplasms pathology
Specific Pathogen-Free Organisms
Tamoxifen pharmacology
Tetradecanoylphorbol Acetate toxicity
Uterine Cervical Neoplasms pathology
Uterine Cervical Neoplasms virology
Cell Transformation, Neoplastic
Cell Transformation, Viral
Cocarcinogenesis
Mouth Neoplasms genetics
Oncogenes
Papillomaviridae pathogenicity
Receptor, Notch1 physiology
Tumor Virus Infections physiopathology
Subjects
Details
- Language :
- English
- ISSN :
- 1538-7445
- Volume :
- 75
- Issue :
- 18
- Database :
- MEDLINE
- Journal :
- Cancer research
- Publication Type :
- Academic Journal
- Accession number :
- 26294213
- Full Text :
- https://doi.org/10.1158/0008-5472.CAN-15-0199