Back to Search Start Over

Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury.

Authors :
Herbert WJ
Powell K
Buford JA
Source :
Experimental brain research [Exp Brain Res] 2015 Nov; Vol. 233 (11), pp. 3231-51. Date of Electronic Publication: 2015 Aug 01.
Publication Year :
2015

Abstract

The purposes of this pilot study were to create a model of focal cortical ischemia in Macaca fascicularis and to explore contributions of the reticulospinal system in recovery of reaching. Endothelin-1 was used to create a focal lesion in the shoulder/elbow representation of left primary motor cortex (M1) of two adult female macaques. Repetitive microstimulation was used to map upper limb motor outputs from right and left cortical motor areas and from the pontomedullary reticular formation (PMRF). In subject 1 with a small lesion and spontaneous recovery, reaching was mildly impaired. Changes were evident in the shoulder/elbow representations of both the lesioned and contralesional M1, and there appeared to be fewer than expected upper limb responses from the left (ipsilesional) PMRF. In subject 2 with a substantial lesion, reaching was severely impaired immediately after the lesion. After 12 weeks of intensive rehabilitative training, reach performance recovered to near-baseline levels, but movement times remained about 50% slower. Surprisingly, the shoulder/elbow representation in the lesioned M1 remained completely absent after recovery, and there was a little change in the contralesional M1. There was a definite difference in motor output patterns for left versus right PMRF for this subject, with an increase in right arm responses from right PMRF and a paucity of left arm responses from left PMRF. The results are consistent with increased reliance on PMRF motor outputs for recovery of voluntary upper limb motor control after significant cortical ischemic injury.

Details

Language :
English
ISSN :
1432-1106
Volume :
233
Issue :
11
Database :
MEDLINE
Journal :
Experimental brain research
Publication Type :
Academic Journal
Accession number :
26231990
Full Text :
https://doi.org/10.1007/s00221-015-4390-x