Back to Search
Start Over
Saccharomyces cerevisiae Sen1 Helicase Domain Exhibits 5'- to 3'-Helicase Activity with a Preference for Translocation on DNA Rather than RNA.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2015 Sep 18; Vol. 290 (38), pp. 22880-9. Date of Electronic Publication: 2015 Jul 20. - Publication Year :
- 2015
-
Abstract
- In the yeast Saccharomyces cerevisiae, the essential nuclear helicase Sen1 is required for efficient termination of transcription of short noncoding RNA genes by RNA polymerase II. However, the mechanism by which Sen1 promotes transcription termination is not known. Prior biochemical studies on the Sen1 homolog from Schizosaccharomyces pombe showed that it can bind and unwind both DNA and RNA, but the S. pombe protein is not essential and has not been demonstrated to function in transcription. Furthermore, Sen1 from either yeast has not previously been expressed as a recombinant protein, due to its large molecular mass (252 kDa in S. cerevisiae). Here, we report the purification and characterization of the 89-kDa S. cerevisiae Sen1 helicase domain (Sen1-HD) produced in Escherichia coli. Sen1-HD binds single-stranded RNA and DNA with similar affinity in the absence of ATP, but it binds RNA more stably than DNA in the presence of ATP, apparently due to a slower translocation rate on RNA. Translocation occurs in the 5' to 3' direction, as for the S. pombe protein. When purified from E. coli at a moderate salt concentration, Sen1-HD was associated with short RNAs that are enriched for the trinucleotide repeat (CAN)4. We propose that Sen1 binds to RNAs and prevents their stable pairing with DNA, consistent with in vivo studies by others showing increased R-loop (RNA/DNA hybrid) formation when Sen1 activity is impaired by mutations. Our results are consistent with a model in which Sen1 promotes transcription termination by resolving R-loops.<br /> (© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Subjects :
- DNA Helicases genetics
DNA Helicases metabolism
DNA, Fungal genetics
DNA, Fungal metabolism
Protein Structure, Tertiary
RNA Helicases genetics
RNA Helicases metabolism
RNA, Fungal genetics
RNA, Fungal metabolism
Recombinant Proteins chemistry
Recombinant Proteins genetics
Recombinant Proteins metabolism
Saccharomyces cerevisiae genetics
Saccharomyces cerevisiae Proteins genetics
Saccharomyces cerevisiae Proteins metabolism
Substrate Specificity physiology
DNA Helicases chemistry
DNA, Fungal chemistry
RNA Helicases chemistry
RNA, Fungal chemistry
Saccharomyces cerevisiae enzymology
Saccharomyces cerevisiae Proteins chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 290
- Issue :
- 38
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 26198638
- Full Text :
- https://doi.org/10.1074/jbc.M115.674002