Back to Search Start Over

Silk fibroin sponges with cell growth-promoting activity induced by genetically fused basic fibroblast growth factor.

Authors :
Kambe Y
Kojima K
Tamada Y
Tomita N
Kameda T
Source :
Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2016 Jan; Vol. 104 (1), pp. 82-93. Date of Electronic Publication: 2015 Aug 06.
Publication Year :
2016

Abstract

Transgenic silkworm technology has enabled the biological properties of silk fibroin protein to be altered by fusion to recombinant bioactive proteins. However, few studies have reported the fabrication of genetically modified fibroin proteins into three-dimensional spongy structures to serve as scaffolds for tissue engineering. We generated a transgenic silkworm strain that produces fibroin fused to basic fibroblast growth factor (bFGF) and processed the fibroin into a spongy structure using a simple freeze/thaw method. NIH3T3 mouse embryonic fibroblasts grown on bFGF-fused fibroin sponges proliferated and spread out well, showing half the population doubling time of cells cultured on wild-type fibroin sponges. Furthermore, the number of primary rabbit articular chondrocytes growing on bFGF-fused fibroin sponges was around five-times higher than that of the wild-type control at 3-days post cell-seeding. As the physical properties of wild-type and bFGF-fused fibroin sponges were almost identical, it is suggested that bFGF fused to fibroin retained its biological activity, even after the bFGF-fused fibroin was fabricated into the spongy structure. The bFGF-fused fibroin sponge has the potential for widespread application in the field of tissue engineering, and the method of fabricating this structure could be applicable to other recombinant bioactive fibroin proteins.<br /> (© 2015 Wiley Periodicals, Inc.)

Details

Language :
English
ISSN :
1552-4965
Volume :
104
Issue :
1
Database :
MEDLINE
Journal :
Journal of biomedical materials research. Part A
Publication Type :
Academic Journal
Accession number :
26190702
Full Text :
https://doi.org/10.1002/jbm.a.35543