Back to Search
Start Over
Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries.
- Source :
-
ACS nano [ACS Nano] 2015 Aug 25; Vol. 9 (8), pp. 8194-205. Date of Electronic Publication: 2015 Jul 22. - Publication Year :
- 2015
-
Abstract
- Nanostructured bilayered V2O5 was electrochemically deposited within a carbon nanofoam conductive support. As-prepared electrochemically synthesized bilayered V2O5 incorporates structural water and hydroxyl groups, which effectively stabilizes the interlayers and provides coordinative preference to the Mg(2+) cation in reversible cycling. This open-framework electrode shows reversible intercalation/deintercalation of Mg(2+) ions in common electrolytes such as acetonitrile. Using a scanning transmission electron microscope we demonstrate that Mg(2+) ions can be effectively intercalated into the interlayer spacing of nanostructured V2O5, enabling electrochemical magnesiation against a Mg anode with a specific capacity of 240 mAh/g. We employ HRTEM and X-ray fluorescence (XRF) imaging to understand the role of environment in the intercalation processes. A rebuilt full cell was tested by employing a high-energy ball-milled Sn alloy anode in acetonitrile with Mg(ClO4)2 salt. XRF microscopy reveals effective insertion of Mg ions throughout the V2O5 structure during discharge and removal of Mg ions during electrode charging, in agreement with the electrode capacity. We show using XANES and XRF microscopy that reversible Mg intercalation is limited by the anode capacity.
Details
- Language :
- English
- ISSN :
- 1936-086X
- Volume :
- 9
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- ACS nano
- Publication Type :
- Academic Journal
- Accession number :
- 26169073
- Full Text :
- https://doi.org/10.1021/acsnano.5b02450