Back to Search Start Over

Neonatal Pulmonary Macrophage Depletion Coupled to Defective Mucus Clearance Increases Susceptibility to Pneumonia and Alters Pulmonary Immune Responses.

Authors :
Saini Y
Wilkinson KJ
Terrell KA
Burns KA
Livraghi-Butrico A
Doerschuk CM
O'Neal WK
Boucher RC
Source :
American journal of respiratory cell and molecular biology [Am J Respir Cell Mol Biol] 2016 Feb; Vol. 54 (2), pp. 210-21.
Publication Year :
2016

Abstract

Resident immune cells (e.g., macrophages [MΦs]) and airway mucus clearance both contribute to a healthy lung environment. To investigate interactions between pulmonary MΦ function and defective mucus clearance, a genetic model of lysozyme M (LysM) promoter-mediated MΦ depletion was generated, characterized, and crossed with the sodium channel β subunit transgenic (Scnn1b-Tg) mouse model of defective mucus clearance. Diphtheria toxin A-mediated depletion of LysM(+) pulmonary MΦs in wild-type mice with normal mucus clearance resulted in lethal pneumonia in 24% of neonates. The pneumonias were dominated by Pasteurella pneumotropica and accompanied by emaciation, neutrophilic inflammation, and elevated Th1 cytokines. The incidence of emaciation and pneumonia reached 51% when LysM(+) MΦ depletion was superimposed on the airway mucus clearance defect of Scnn1b-Tg mice. In LysM(+) MΦ-depleted Scnn1b-Tg mice, pneumonias were associated with a broader spectrum of bacterial species and a significant reduction in airway mucus plugging. Bacterial burden (CFUs) was comparable between Scnn1b-Tg and nonpneumonic LysM(+) MΦ-depleted Scnn1b-Tg mice. However, the nonpneumonic LysM(+) MΦ-depleted Scnn1b-Tg mice exhibited increased airway inflammation, the presence of neutrophilic infiltration, and increased levels of inflammatory cytokines in bronchoalveolar lavage fluid compared with Scnn1b-Tg mice. Collectively, these data identify key MΦ-mucus clearance interactions with respect to both infectious and inflammatory components of muco-obstructive lung disease.

Details

Language :
English
ISSN :
1535-4989
Volume :
54
Issue :
2
Database :
MEDLINE
Journal :
American journal of respiratory cell and molecular biology
Publication Type :
Academic Journal
Accession number :
26121027
Full Text :
https://doi.org/10.1165/rcmb.2014-0111OC