Back to Search
Start Over
A reversed-phase HPLC-UV method developed and validated for simultaneous quantification of six alkaloids from Nicotiana spp.
- Source :
-
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences [J Chromatogr B Analyt Technol Biomed Life Sci] 2015 Aug 01; Vol. 997, pp. 142-5. Date of Electronic Publication: 2015 Jun 15. - Publication Year :
- 2015
-
Abstract
- A reversed-phase HPLC-UV method was developed, optimized, and validated for the separation and quantitation of six target alkaloids from leaves of Nicotiana species (nicotine, nornicotine, anatabine, anabasine, myosmine, and cotinine). A bidentate reversed-phase C18 column was used as stationary phase and an alkaline ammonium formate buffer and acetonitrile as mobile phase. The alkaloids were well separated in a short run time of 13min with mobile phase pH 10.5 and a small gradient of 9-13% acetonitrile, and detected using UV at 260nm. Peak parameters were acceptable for all six closely related alkaloids. The proposed method has enough linearity with correlation coefficient >0.999 within the investigated range for all tested alkaloids. Satisfactory precision was achieved for both intra- and inter-day assay, with RSD less than 2% for all alkaloid standards. Reproducibility was also within the acceptable range of RSD <2%. Limit of detection was 1.6μg/mL for nicotine and below 1μg/mL for all other alkaloids. The limit of quantification was 2.8 and 4.8μg/mL for nornicotine and nicotine respectively, and below 2μg/mL for all other alkaloids. The method was successfully applied for simultaneous analysis of alkaloids in leaves of Nicotiana benthamiana.<br /> (Copyright © 2015 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-376X
- Volume :
- 997
- Database :
- MEDLINE
- Journal :
- Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
- Publication Type :
- Academic Journal
- Accession number :
- 26114650
- Full Text :
- https://doi.org/10.1016/j.jchromb.2015.06.006