Back to Search Start Over

Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains.

Authors :
Korsman JC
Schipper AM
de Vos MG
van den Heuvel-Greve MJ
Vethaak AD
de Voogt P
Hendriks AJ
Source :
Chemosphere [Chemosphere] 2015 Nov; Vol. 138, pp. 33-9. Date of Electronic Publication: 2015 May 27.
Publication Year :
2015

Abstract

There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine-marine food chains with a bioaccumulation model comprising five trophic levels. Using this model, we estimated uptake and elimination rate constants for NPEOs based on the organisms' weight and lipid content and the chemicals' Kow. Further, we calculated accumulation factors for NP and NPEOs, including biota-sediment accumulation factors (BSAF) and biomagnification factors (BMF), and compared these to independent field measurements collected in the Western Scheldt estuary in The Netherlands and field data reported in the literature. The estimated BSAF values for NP and total NPEOs were below 1 for all trophic levels. The estimated BMF values were around 1 for all trophic levels except for the highest level (carnivorous mammals and birds). For this trophic level, the estimated BMF value varied between 0.1 and 2.4, depending on the biotransformation capacity. For all trophic levels, except primary producers, the accumulation estimates that accounted for biotransformation of NPEOs into NP were closer to the field data than model estimates that did not include biotransformation, indicating that NP formation by biotransformation of NPEOs might occur in organisms.<br /> (Copyright © 2015 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
138
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
26026901
Full Text :
https://doi.org/10.1016/j.chemosphere.2015.05.040