Back to Search
Start Over
A Population Based Study of the Genetic Association between Catecholamine Gene Variants and Spontaneous Low-Frequency Fluctuations in Reaction Time.
- Source :
-
PloS one [PLoS One] 2015 May 15; Vol. 10 (5), pp. e0126461. Date of Electronic Publication: 2015 May 15 (Print Publication: 2015). - Publication Year :
- 2015
-
Abstract
- The catecholamines dopamine and noradrenaline have been implicated in spontaneous low-frequency fluctuations in reaction time, which are associated with attention deficit hyperactivity disorder (ADHD) and subclinical attentional problems. The molecular genetic substrates of these behavioral phenotypes, which reflect frequency ranges of intrinsic neuronal oscillations (Slow-4: 0.027-0.073 Hz; Slow-5: 0.010-0.027 Hz), have not yet been investigated. In this study, we performed regression analyses with an additive model to examine associations between low-frequency fluctuations in reaction time during a sustained attention task and genetic markers across 23 autosomal catecholamine genes in a large young adult population cohort (n = 964), which yielded greater than 80% power to detect a small effect size (f(2) = 0.02) and 100% power to detect a small/medium effect size (f(2) = 0.15). At significance levels corrected for multiple comparisons, none of the gene variants were associated with the magnitude of low-frequency fluctuations. Given the study's strong statistical power and dense coverage of the catecholamine genes, this either indicates that associations between low-frequency fluctuation measures and catecholamine gene variants are absent or that they are of very small effect size. Nominally significant associations were observed between variations in the alpha-2A adrenergic receptor gene (ADRA2A) and the Slow-5 band. This is in line with previous reports of an association between ADRA2A gene variants and general reaction time variability during response selection tasks, but the specific association of these gene variants and low-frequency fluctuations requires further confirmation. Pharmacological challenge studies could in the future provide convergent evidence for the noradrenergic modulation of both general and time sensitive measures of intra-individual variability in reaction time.
- Subjects :
- Adolescent
Adult
Attention physiology
Attention Deficit Disorder with Hyperactivity genetics
Attention Deficit Disorder with Hyperactivity physiopathology
Catechol O-Methyltransferase genetics
Child
Female
Genetic Association Studies
Genotype
Humans
Male
Netherlands
Polymorphism, Single Nucleotide genetics
Prospective Studies
Reaction Time physiology
Receptors, Adrenergic, alpha-2 genetics
Young Adult
Catecholamines genetics
Reaction Time genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 10
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 25978426
- Full Text :
- https://doi.org/10.1371/journal.pone.0126461