Back to Search Start Over

Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats.

Authors :
Qin W
Li X
Peng Y
Harlow LM
Ren Y
Wu Y
Li J
Qin Y
Sun J
Zheng S
Brown T
Feng JQ
Ke HZ
Bauman WA
Cardozo CC
Source :
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research [J Bone Miner Res] 2015 Nov; Vol. 30 (11), pp. 1994-2004. Date of Electronic Publication: 2015 Jun 10.
Publication Year :
2015

Abstract

Unloading, neural lesions, and hormonal disorders after acute motor-complete spinal cord injury (SCI) cause one of the most severe forms of bone loss, a condition that has been refractory to available interventions tested to date. Thus, these features related to acute SCI provide a unique opportunity to study complex bone problems, potential efficacious interventions, and mechanisms of action that are associated with these dramatic pathological changes. This study was designed to explore the therapeutic potential of sclerostin antibody (Scl-Ab) in a rat model of bone loss after motor-complete SCI, and to investigate mechanisms underlying bone loss and Scl-Ab action. SCI rats were administered Scl-Ab (25 mg/kg/week) or vehicle beginning 7 days after injury then weekly for 7 weeks. SCI resulted in significant decreases in bone mineral density (-25%) and trabecular bone volume (-67%) at the distal femur; Scl-Ab completely prevented these deteriorations of bone in SCI rats, concurrent with markedly increased bone formation. Scanning electron microscopy revealed that SCI reduced numbers of osteocytes and dendrites concomitant with a morphology change from a spindle to round shape; Scl-Ab corrected these abnormalities in osteocytes. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increases in mRNA levels of LRP5, osteoprotegerin (OPG), and the OPG/RANKL ratio, and a decrease in DKK1 mRNA. Our findings provide the first evidence that robust bone loss after acute motor-complete SCI can be blocked by Scl-Ab, at least in part, through the preservation of osteocyte morphology and structure and related bone remodeling. Our findings support the inhibition of sclerostin as a promising approach to mitigate the striking bone loss that ensues after acute motor-complete SCI, and perhaps other conditions associated with disuse osteoporosis as a consequence of neurological disorders.<br /> (© 2015 American Society for Bone and Mineral Research.)

Details

Language :
English
ISSN :
1523-4681
Volume :
30
Issue :
11
Database :
MEDLINE
Journal :
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Publication Type :
Academic Journal
Accession number :
25974843
Full Text :
https://doi.org/10.1002/jbmr.2549